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Abstract

Molecular visualization is widely used in structural molecular biology and drug discovery to study
the structure of molecules and help their understanding. However, identifying meaningful viewpoints
is challenging because of their abstract and convoluted nature of molecular scenes. Consequently,
viewpoint selection methods have been developed to highlight important features of molecules. These
methods base the selection process on metrics, which are functions that assign a score based on
what can be observed in an image of a molecule. In this paper, we study 20 state-of-the-art met-
rics across four common molecular representations: Ball & Stick, van der Waals, Solvent Excluded
Surface, and Cartoon. We evaluate the consistency of these metrics in identifying two crucial geomet-
rical configurations for molecular studies: alignment and tunnel. We show that these metrics do not
provide consistent results in finding these features. Therefore, we propose to optimize linear metric
combination models, which significantly improves the overall detection performance.
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1 Introduction

Molecular visualization has become increasingly
important in many fields, such as drug design.
Visualization software enables users to explore
large molecular systems, understand their com-
plex structures and share their findings with
others, including peers and the general public [1].

There are different ways to represent
molecules, depending on the information that

needs to be highlighted. Some important represen-
tations are: Ball & Stick shows atoms as spheres
and their chemical bonds as cylinders (figure la);
van der Waals displays atoms as spheres of
size proportional to their van Der Waals radius
(figure 1b); the Solvent Excluded Surface shows
the boundary surface of a molecule with respect
to a solvent (figure 1c); Cartoon exposes the
secondary structure of the molecule as ribbons,



arrows, and coils (figure 1d). For more informa-
tion about molecular visualization, we refer the
reader to Kozlikové et al. state of the art [2].

Visualizing molecules is a challenging task,
even for experts: molecular systems are visually
abstract and complex objects, whatever their rep-
resentation. Previous surveys [3, 4] have shown
that automatic viewpoint selection can help to
find meaningful views of objects for movies, video
games, or computer-aided design.

Viewpoint selection tasks are mainly done
using metrics. A metric is a function that takes
an image generated from a viewpoint as input and
returns a score indicating its relevance according
to specific criteria.

A previous study on viewpoint selection meth-
ods for 20 state-of-the-art metrics from the gen-
eral field adapted for molecular visualization has
shown promising results [5]. This work aims to
find alignments (figure 2) and tunnels (figure 3)
in molecules represented by either Ball & Stick or
van der Waals models. They have concluded that
no metric can reliably find both configurations
simultaneously.

In this work, we propose to extend this study
to two other common molecular representations:
the Solvent Excluded Surface and Cartoon. Addi-
tionally, we present a method to optimize linear
combination models of metrics to improve their
consistency in finding both configurations.

The paper is organized as follows. We first
present related works regarding viewpoint selec-
tion methods and their applications (section 2).
Then, section 3 provides the study of the met-
rics. Section 4 presents models for combining
metrics to improve their detection performance.
Finally, section 5 concludes this paper and pro-
vides insights into future work.

2 Related Work

Viewpoint selection has been a subject of research
for decades. Some studies have shown that users
have view preferences when visualizing objects [6,
7]. Viewpoints are considered relevant when they
provide important information about the object,
improving its understanding.

Fig. 1: Different molecular representations
of the same molecule: (a) Ball & Stick;
(b) van der Waals; (c) Solvent Excluded Surface;
(d) Cartoon.
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Fig. 2: (a) An alignment, where the foreground

hides the background; (b) a global viewpoint of
the same molecule.

(b)

Fig. 3: (a) A tunnel, with a hole going through
the molecule; (b) a global viewpoint of the same
molecule.



2.1 Viewpoint selection for general
objects

Viewpoint selection was first applied to assets used
in movie production, video games, and computer-
aided design. This paper refers to these assets as
“general” objects.

Kamada and Kawai [8] have presented one of
the first works on viewpoint selection. They have
proposed a method to find views that minimize the
number of degenerated faces shown (i.e. aligned
faces visible using an orthographic camera). Ple-
menos and Benayada [9] have introduced several
metrics based on the projected surface informa-
tion to display most of an object. Later, Vazquez
et al. [10] have designed a new metric called View-
point entropy based on Shannon entropy [11] to
find informative viewpoints. Since then, informa-
tion theory has been widely used to create new
metrics, as presented in the surveys of Secord et
al. [3] and Bonaventura et al. [4].

Several works have also presented viewpoint
selection for other kinds of visualization. For
instance, Stoev and Strafler [12] have used it for
terrain models, Viola et al. [13] for volumetric data
and Marsaglia et al. [14] for large-scale scientific
datasets.

2.2 Viewpoint selection for
molecules

In the case of molecular visualization, interesting
viewpoints generally highlight specific geometri-
cal configurations. Viewpoints showing most of a
molecule can also be relevant, as they give global
information about its structure.

Vézquez et al. [15] have introduced View-
point entropy to find alignments (figure 2, left)
and global viewpoints (figure 2, right) using the
Ball & Stick representation and an orthographic
camera. Doulamis et al. [16] have extended
Vazquez work by adding semantic information to
the search process. They have also designed a
non-linear classifier that is continuously trained
from expert selection within a set of predicted
good viewpoints. Heinrich et al. [17] have adapted
Viewpoint entropy for the Cartoon representa-
tion using its residue features. Additionally, they
have conducted a study on view preferences for
molecules and concluded that tunnels (figure 3)
are also an interesting feature to identify. Larroque

et al. [5] have studied the performance of metrics
designed for general objects applied to molecular
visualization. Their study concludes that no sin-
gle metric can simultaneously identify alignments
and tunnels.

In this paper, we propose to continue this last
study by extending the dataset and considering
new molecular representations (section 3).

2.3 Metric combinations

Hartwig et al. [18] have conducted a user study
revealing that no single metric tends to satisfy
their preferences.

Polonsky et al. [19] have suggested that com-
bining metrics could improve viewpoint selection
performance. Secord et al. [3] conducted a user
study to establish a ground truth baseline to
optimize metric combinations. They have also con-
cluded that combining up to five metrics using a
simple linear model improves the prediction per-
formance. Marsaglia et al. [14] have shown that
specialized metrics can be combined with gen-
eral metrics to achieve better performance when
searching for viewpoints around scientific data.

The purpose of our work is to determine if
metric combination models can provide interesting
results for molecular visualization, as they have
not yet been applied to this field (section 4).

3 Metrics benchmark

In this section, we extend the work of Larroque et
al. [5], which evaluated the ability of single met-
rics to identify alignments (figure 2) and tunnels
(figure 3) in 63 molecules using the Ball & Stick
and van der Waals representation. Alignments can
help visualize how the molecule is organized in
space [15] while tunnels may correspond to func-
tional pathways or cavities within the protein
structure [17]. We analyze the same 20 metrics,
divided into five categories (table 1), which have
been shown to be effective in viewpoint selection
for general or scientific data [3, 4, 14]. Specifically,
we extend this study by:

® considering two additional molecular represen-
tations: the Solvent Excluded Surface and Car-
toon;

® using an extended dataset of 105 molecules from
the Protein Data Bank [20] with 47 for the
alignment and 58 for the tunnel (appendix Al);



® proposing to annotate geometrical configura-
tions on each molecule beforehand to simplify
metrics performance computation.

By definition, some metrics need to consider
individually identified elements (e.g. spheres or
cylinders). Therefore, we need to determine what
is an element in the two added representations. For
the Solvent Excluded Surface, we propose to use
its surface patches. For Cartoon, we use its residue
features, as suggested in [17]. Note that these two
representations are computed with ChimeraX [21].

In the following sections, we present our bench-
mark process and the results of our study. A
nomenclature is provided in table 2.

Metric name

Number of visible elements [9]
Projected area [9]

Plemenos and Benayada [9]
Visibility ratio [9]

Viewpoint entropy [10]
Kullback-Leibler distance [22]
Viewpoint mutual information [23]
Information I [24]

Information I3 [24]

Silhouette length [19]

Silhouette entropy [19]
Silhouette curvature [25]
Silhouette curvature extrema [3]
Stoev and Strafer [12]
Maximum depth [3]

Depth distribution [3]

Depth entropy [14]

Instability [23]

Depth-based visual stability [26]
Largest cone of view [5]

Category

Surface

Silhouette

Depth

Stability
High-level

Table 1: The 20 studied metrics grouped
into five categories.

3.1 Setup

We use the same setup as described in [5]. Candi-
date viewpoints around the molecule are selected
using an enclosing icosahedron of 642 vertices, as a
tradeoff between computation time and sampling
quality. The icosahedron is positioned to ensure
at least one viewpoint from which the geomet-
rical configuration (alignment or tunnel) can be
identified. An orthographic camera is placed on
each vertex to capture an image of the scene of
1280 x 720 pixels. The camera parameters are

Notation | Description
v,V | A viewpoint and a set of viewpoints
M | Set of molecules (appendix A)
R | Set of molecular representations
oy | Input configuration, o0 ~ M X R at
viewpoint v
qi | A metric ¢
Ground truth value for a configura-
tion
C | Consistency value
Q(oy) | A linear metric combination model
w; | Weight of metric ¢
P(ov) | Prediction tensor for a configura-
tion and each viewpoint in V'
L | Cost function

Table 2: Nomenclature.

Fig. 4: Benchmarking process. Cameras are
placed on the enclosing icosahedron vertices from
which metrics are evaluated.

adjusted to fit the entire molecule. Finally, view-
point images are then used by all the metrics to
compute their corresponding scores. The bench-
mark process is illustrated in figure 4. Depending
on the metric definition, the best viewpoints of a
molecule can either be of highest or lowest score.

To enable comparison between the different
metrics, we introduce a ground truth value at
each vertex of the enclosing icosahedron. These
values correspond to the visibility of each of the
searched configurations. The maximum value of
1 is manually assigned to vertices where the hole
going through the molecule is the most visible
(figure 3, left). Since tunnels can have different
shapes and sizes, we introduce a tolerance radius.
On the neighboring vertices, we apply a quadratic
decay function to the values, until the tunnel is
no longer visible when moving the camera around
the molecule (figure 5). In contrast, for the align-
ment, only the viewpoints where the foreground
of the molecule completely hides the background
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Fig. 5: Example performance value attribution for
a molecule. The red sphere corresponds to the cen-
ter of the tolerance radius r with quadratic decay
for subsequent points.

(figure 2, left) are assigned a value of 1 and all
other vertices 0.

In this work, we define M as the set of
molecules, R as the set of representations, and V'
as the set of viewpoints. For a given sampled con-
figuration o, ~ M X R at a viewpoint v € V| the
ground truth value is defined as GT(o).

3.2 Performance measure

Two measures are used to indicate the metrics
performance:

® Accuracy: the ability of a metric to identify a
given geometrical configuration at either its
highest or lowest scoring viewpoint for individ-
ual molecules.

® Consistency: the ability of a metric to reliably
identify a given geometrical configuration only
on its highest or lowest scoring viewpoint across
all molecules.

In the context of this study, since a high con-
sistency ensures that a viewpoint with a certain
configuration can be reliably found, we focus on
this performance measure.

We define ¢;(0,) as the function of a metric
q; taking a configuration o, to compute a score
determining the image quality from a viewpoint v.

For a metric ¢;, computing the consistency
of its highest scoring viewpoint vy,ax involves

C

Tmax

averaging its ground truth values for each config-
uration:

1 n
Cipo = 2231 GT(00,.0.) (1)

where n corresponds to the number of samples
in o,,,, . Similarly, we can define the consistency
of the minimum scoring viewpoints vmin as Cj,,.,
The final consistency for a metric g; is then defined
as

Ci = max(Ci,..; Cipnin) (2)
Using this equation, we can benchmark the per-
formance of each studied metric.

3.3 Results

This section presents and analyses the results
of our benchmark. Figure 6 sums up the con-
sistency of each metric listed in table 1 for the
alignment and for the tunnel. The plots corre-
spond to an average over the four representations,
where smaller error bars indicate more consistent
results across them. Detailed results for individual
representations are provided in appendix C.

Alignment

Mazimum depth is the metric with the best con-
sistency (C = 0.995) because an aligned viewpoint
has the lowest maximum depth compared to the
others.

Metrics relying on surface information globally
perform well (C > 0.9), except for Projected area,
Stoev and Strafler and Information I3. The first
two have more variance because van der Waals and
Solvent Excluded Surface representations can cre-
ate larger visible areas depending on the molecule
shape, in contrast with Ball & Stick or Car-
toon (figure 7). Information I3 tries to capture
specific information about elements visible from
most viewpoints around the molecule. This makes
it perform badly on smaller molecules, which
constitute most of our dataset.

We can notice that since the Solvent Excluded
Surface and Cartoon representations are meshes,
some discretization issues may occur, slightly
impacting the variance of some metrics such as
Viewpoint entropy or Information Is.

Most other metrics rely too much on factors
that are not useful for finding alignments, such as



Alignment

Number of visible elements
Projected area

Plemenos and Benayada
Visibility ratio

Viewpoint entropy
Kullback-Leibler distance
Viewpoint mutual information

Information Io

Information I3 | | o
Silhouette length —| }

Silhouette entropy | | 0

Silhouette curvature —| © 1

Silhouette curvature extrema |} ©
Stoev and Strafler |

Maximum depth |

Depth distribution —|

Depth entropy | |

Instability
Depth-based visual stability | |

Largest cone of view —
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Fig. 6: Mean consistency for each metric over all representations. On the left, the results for the align-
ment and on the right, the results for the tunnel. The error bars represent the minimum and maximum

consistency.
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Fig. 7: The surface difference (in pixels) between
a front view and a side view for Ball & Stick and
van der Waals.

analyzing the depth range or the turning angles
between consecutive pixels in the silhouette cat-
egory. These metrics, by themselves, should be
avoided for finding this configuration.

To conclude, most surface metrics can be used
to find the alignment along with Mazimum depth
as they provide near-perfect consistency.

Tunnel

Only four metrics have a consistency above 0.5.
Largest cone of view has the best consistency

(C =0.7) and a low variance. However, by defini-
tion, it fails when the tunnel is not centered and
does not provide good global viewpoints. Depth-
based visual stability gives good results (C = 0.69)
but has a high variance and is the most compu-
tationally expensive as can be seen in table B2.
Finally, Depth distribution and Depth entropy
have lower consistency but can also provide good
global viewpoints.

All other metrics have poor consistency (C <
0.5) and should be avoided. This is due to the
complexity of identifying tunnels, as they have no
special properties regarding most metrics defini-
tions. Since there is no correlation between the
visible surface and the presence of a tunnel, met-
rics relying on surface or silhouette information
can fail to find it. Finally, metrics relying on max-
imum depth do not perform well, as a wide range
of depth values can be seen from most viewpoints.

To sum up, Depth entropy should be used
as it is more versatile with good consistency.
However if only finding tunnels is needed,
Largest cone of wview should be preferred.

These results confirm that, as shown in [5],
most single metrics have limitations or edge cases



that can degrade their performance. Moreover,
no metric has convincing results in finding both
alignment and tunnels. This motivates the inves-
tigation of metric combinations to improve the
automatic viewpoint selection process.

4 Metric combinations

This section presents an optimization process for
finding metric combinations for the detection of
both alignment and tunnels in molecules. The goal
is to search for models that provide the highest
possible consistency.

Polonsky et al. [19] hypothesized that it could
be possible to combine several metrics to ben-
efit from their individual advantages. Secord et
al. [3] confirmed this idea in their study on gen-
eral objects, which used linear combination mod-
els to improve viewpoint selection performance.
Similarly, Marsaglia et al. [14] found compara-
ble results in their research on viewpoint selection
methods for large-scale datasets. However, it is not
yet clear whether this approach can be applied to
molecular visualization.

In this work, we propose to create a linear
combination model of metrics that can find both
geometrical configurations in molecules, regardless
of their representation. To optimize this model, we
need to define a cost function.

4.1 Cost function

Our linear combination model is based on a
weighted sum of metrics defined as

Q(Uv) = Z Wy qi(av) (3>
i=1

where n is the number of metrics in the model
and w; is the weight applied to a metric ¢;. Each
individual metric score is normalized to ensure
coherent weight values during the optimization
process. The goal is to find an optimal combina-
tion by adjusting the weights w; according to the
error between the predicted best viewpoints and
the ground truth values.

To select the best predicted viewpoint, we
apply softmax on Q(o,) (equation 3) as an acti-
vation function for each v € V. For a given
configuration oy our prediction tensor P(oy) is

then defined as

eQ(O'v)

keVv

Finally, we define the cost function £ as the
mean squared error between the prediction P(oy)
(equation 4) and the ground truth GT(ov):

_ IGT(ov) — P(ov)|I?

L

(5)

where n is the number of configurations in oy ~
M x R. This cost function is fast to compute as it
only consists of tensor operations on precomputed
data.

4.2 Optimization method

We consider the search for the best metric combi-
nation as a hyperparameter optimization process.
We then need to test all the possible combina-
tions of metrics to find the best one. In our case,
it results in Zi[):Q (sz) = 1048555 possible tests.
Secord et al. [3] have stated that using more than 5
metrics does not improve the performance of linear
models. This reduces the number of combinations
to Yp_y (%) = 21679.

To obtain reliable results, we use a Nested
Cross-Validation (Nested CV) method as it pro-
vides unbiased performance estimates for small
datasets such as ours [27].

Nested CV splits the training process into two
nested layers, each using a K-fold approach. In
the outer layer, the molecular dataset is split into
K folds where each fold is used as a test set once,
while the others are used for training. In the inner
layer, for each training set, the dataset is split
again to find the best hyperparameters. We use
K =5 folds for the nested layers as it has lower
computation times while still providing reliable
results (figure 8).

To optimize the combination model in the
inner layers of the Nested CV we propose to
use RPROP [28]. RPROP is a parameter-free
optimizer that uses an adaptive step size, which
provides fast convergence rates. The optimizer
ailms to minimize the distance between the pre-
dicted best viewpoint P(o,) and the ground-truth
best viewpoint GT(c,). This distance is defined
by the cost function £ (equation 5) and is reduced
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Fig. 8: Consistency of a linear combination model
of 5 metrics across 500 trials for different K-Fold
K values.

by adjusting the weights of the combination model
(equation 3).

The optimized weights provided by each inner
fold are averaged and transmitted to their corre-
sponding outer layer. Then, for each outer test set,
the consistency of each individual combination is
computed using these weights. The final optimized
metric combination is given by the average of the
outer folds results.

4.3 Results

We use our optimization process to create three
different viewpoint selection models: two special-
ized for finding alignments or tunnels and a gen-
eral one to find both. Tables 3, 4 and 5 present
the weights for the best single metric (1-comb)
to the best combinations of up to five metrics (5-
comb) and their corresponding consistency. For
single metrics, a weight of —1 means that the
minimum score viewpoint shows the geometrical
configuration. These tables only present the best
consistency found for each model, full results are
available in the supplementary files.

Alignment model

Results for this model are shown in table 3.
The individual metric Maximum depth provides
near-perfect results with consistency of 0.995. In
this case, a 2-combination is sufficient to have
100% consistency for the current dataset. Table 3
presents one of many possible combinations to
get such results, as thousands can achieve perfect

consistency. This performance is unsurprising, as
the alignment is simple to detect for most sin-
gle metrics when an orthographic camera is used
(section 3.3).

Tunnel model

Table 4 shows the results of the tunnel model.
The single metric Largest cone of view is the best
to detect tunnels but has a consistency of only
0.703 (section 3.3). We can notice that its weak-
ness can be offset by combining it with other
metrics relying on surface or depth analysis. Start-
ing from three metrics, the consistency exceeds
0.8. Combining more metrics only provides small
advantages, given the increase in computation
time.

General model

The consistency results for identifying both tun-
nels and alignments can be found in table 5. Using
a single metric (Mazimum depth) gives a con-
sistency of 0.666. We can notice that only two
metrics provide a significant increase in terms of
detection performance. Combining four metrics
allows to exceed 0.9 consistency, when combining
five only offers small additional benefits.

The best combinations always include metrics
based on surface or depth information along with
Largest cone of view. Indeed, given that identify-
ing alignment is relatively simple, the best metrics
to combine in the general model are similar to
those useful for finding tunnels.

We evaluate the statistical significance of
the performance gain achieved by the optimized
model. Paired t-tests compare the general model
against each of the 20 single metrics across all
molecules. For each molecule, predictions are aver-
aged over the four considered representations
before testing. The optimized model significantly
outperforms most metrics (p < 0.015). No signif-
icant difference is observed for Mazximum depth
(p = 0.79), Depth-based visual stability (p =
0.48), and Information Iy (p = 0.17). These tests
support that the optimization provides a con-
sistent, statistically supported improvement over
most single metrics. The absence of significance
for some metrics is expected: for instance, Mazxi-
mum depth, already achieves near-ceiling perfor-
mance for alignments and good results for tunnels,
leaving limited room for improvement.



1-comb | 2-comb | 3-comb | 4-comb | 5-comb
Maximum depth -1
Number of visible elements -46.929 -73.674 -66.08 -56.023
Plemenos and Benayada 22.436 61.275 58.405 60.017
Projected area -15.535 -13.538 -11.767
Viewpoint entropy -4.332
Visibility ratio -8.411
Kullback-Leibler distance 7.694
Consistency | 0.995 | 1.000 | 1.000 [ 1.000 | 1.000

Table 3: Optimized weights and consistency for the alignment specialized model: results are given from
one (1-comb) to five linear combinations (5-comb). Optimization has been performed on a dataset of 47

molecules (appendix Al).

1-comb | 2-comb | 3-comb | 4-comb | 5-comb
Largest cone of view 1 12.709 11.373 11.553 11.566
Depth entropy -8.389 -5.33 -4.52
Viewpoint entropy -6.331
Depth-based visual stability 8.039 3.412 4.467
Kullback-Leibler distance 7.496
Plemenos and Benayada -4.972
Instability 3.019
Consistency [ 0703 | 0.790 | 0.836 [ 0.858 | 0.869

Table 4: Optimized weights and consistency for the tunnel specialized model: results are given from
one (1-comb) to five linear combinations (5-comb). Optimization has been performed on a dataset of 58

molecules (appendix A1)

This study shows that there are benefits in
using specialized linear models for finding the two
geometrical configurations compared to the gen-
eral one. However, as shown in table 6, the gains
are small. The general model is useful for the
preliminary study of unknown molecules.

5 Conclusion

In this work, we have studied the performance of
single metrics for finding two important geometri-
cal configurations of molecules: the alignment and
the tunnel. We showed that, for the alignment,
several metrics are nearly perfectly consistent.
However, identifying tunnels is more complex and
no metric provides satisfying results.

To improve the global detection performance,
we have proposed to combine metrics. We have
studied three different linear models to find either
alignment or tunnels, or both at the same time.
While the specific models perform slightly bet-
ter, they fail to generalize to any molecule which
reduces their usability. We conclude that the

global model should be used in most cases as it can
highlight interesting configurations of unknown
molecules.

In this work, we focused on a linear combina-
tion model. However, Secord et al. [3] suggested
that non-linear approaches may yield better per-
formance. Future studies could explore machine
learning methods to design more complex and effi-
cient combination models. In particular, AutoML
techniques [29] could automate the search for
optimal architectures and parameters, potentially
improving viewpoint selection performance.

Computation time was out of scope for this
work and has only been quickly discussed but
could be an important parameter to consider
in our optimization process. Appendix B pro-
vides indicative benchmarks of metric compu-
tational performance. Another way of improve-
ment could be exploring other methods to select
candidate viewpoints around molecules. Finally,
providing new specialized metrics for other inter-
esting molecular features could benefit their study



1-comb | 2-comb | 3-comb | 4-comb | 5-comb
Maximum depth -1 -4.806
Projected area -14.475
Depth entropy -22.775 -12.532 -6.034
Viewpoint mutual information 14.008

Largest cone of view 8.854 9.18 6.505

Kullback-Leibler distance 11.181
Depth-based visual stability 9.29 8.37
Plemenos and Benayada -7.57
Instability 3.758
Consistency [ 0.666 | 0.848 | 0.893 [ 0.906 | 0.912

Table 5: Optimized weights and consistency for the general model: results are given from one (1-comb)
to five linear combinations (5-comb). Optimization has been performed on a dataset of 105 molecules

(appendix Al).

Dataset Full Alignment Tunnel
Model ‘ Gen. ‘ Spec. ‘ Gen. | Spec. ‘ Gen.
1-comb | 0.666 | 0.995 | 0.995 | 0.703 | 0.400
2-comb | 0.848 | 1.000 | 0.995 | 0.790 | 0.729
3-comb | 0.893 | 1.000 | 0.973 | 0.840 | 0.827
4-comb | 0.906 | 1.000 | 0.984 | 0.855 | 0.842
5-comb | 0.912 | 1.000 | 0.973 | 0.868 | 0.862

Table 6: Consistency comparisons of the gen-
eral (Gen.) model performance against the spe-
cialized (Spec.) models. These results were com-
puted on their respective full datasets (Align-
ment and Tunnel) using the best-found weights
in table 3, 4 and 5.

for instance, by facilitating the identification and
visualization of interaction zones or carbon chains.

Supplementary information. The code and
full results for our metric combination process
(detailed in section 4) are available in the accom-
panying supplementary material. The results files
contain the weights for each metric combination,
as well as the resulting accuracy and consistency
which are obtained by running the optimization
process from the source code.
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Appendix A Dataset

Table A1 gives the PDB IDs [20] of the molecules
used for the detection of alignments and tunnels.
The global dataset contains 105 molecules.

Appendix B Maetric
computation
times

Table B2 presents indicative benchmark results
for the computation times of the metrics listed in



Alignment dataset (47 elements)

5K2E,
20NV,
6GQ5,
4RIL,
6C3F,
8DDG,

7SXN,
6NB9,
7LUX,
6C38,
5V5B,
4N1I0,

4XFO0,
4W5L,
6C40,
6BTK,
7LTU,
4Q%X,

6FGR,
6RHB,
6BZM,
6FHC,
8DDF,
5TXD,

6RHD,
3FVA,
3NHD,
5E5Z,
3Q2%,
3DG1,

4w71, 5155,
6DIY, 4ZNN,
30VL, 60IZ,
1A3J, 5KO00,
6FHD, 5K7N,
3NVG, 6PQA

200X,
4ROP,
5VSG,
3FPO,
6BWZ,

Tunnel dataset (58 elements)

5371,
6X6K,
1EI7,
5WQ8,
7QXF,
1B25,
7PKR,
1CGM,

6UWT,
2NNG,
5CQF,
6X62,
1F1H,
6USF,
1FOU,
1400

1GEH,
6U42,
6X63,
8PHU,
198,
1HIO,
1AW5,

1LJ7,
5TCR,
6S6M,
4P9Y,
1AVO,
1DW9,
5FKI,

1A2V,
7Q4U,
1KP8,
1HKX,
5LKI,
7SN9,
7LER,

5WJIT,
2WCD,
1AON,
1BHC,
6Q29,
2GTL,
1A6R,

2X2C,
1BGA,
1408,
1GRL,
4vak,
7MUS,
7SP4,

75QC,
6ZW7,
7T7C,
6TMW,
7AX3,
1AA1,
7AZD,

Table A1l: Molecules PDB IDs [20] for the detec-
tion of alignments (top) and tunnels (bottom).

table 1. The tests were conducted on a computer
equipped with an AMD Ryzen 7 3700X CPU and
32 GB of RAM. All metrics were implemented
in the same way for CPU execution with limited
parallelism. These results should be considered as
rough guidelines, since no specific optimization for
computational efficiency was performed.

Time (ms)

Metrics

0.2 to 0.3

Projected area, Visibility ratio,
Stoev and StrafSer, Mazimum depth

0.3 to 0.5

Number of visible elements,
Plemenos and Benayada, Silhouette
length, Silhouette entropy,
Silhouette curvature, Silhouette
curvature extrema

0.6 to 1.0

Viewpoint entropy, Kullback—Leibler
distance, Viewpoint mutual
information, Information I2, Depth
distribution, Depth entropy, Largest
cone of view

4.1

Information I3

6.6

Instability

900

Depth-based visual stability

Table B2: Computation time per viewpoint
of different metrics on 1AON (average over 642

viewpoints).

Appendix C Full benchmark

results

Figure C1 and figure C2 present the accuracy and
consistency results of each metric in table 1 and
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each representation separately for the detection of
alignments and tunnels respectively.
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